3.1233 \(\int \frac {1}{x^{14} \sqrt [4]{a-b x^4}} \, dx\)

Optimal. Leaf size=134 \[ -\frac {8 b^{7/2} x \sqrt [4]{1-\frac {a}{b x^4}} E\left (\left .\frac {1}{2} \csc ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{39 a^{7/2} \sqrt [4]{a-b x^4}}-\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}} \]

[Out]

-1/13*(-b*x^4+a)^(3/4)/a/x^13-10/117*b*(-b*x^4+a)^(3/4)/a^2/x^9-4/39*b^2*(-b*x^4+a)^(3/4)/a^3/x^5-8/39*b^(7/2)
*(1-a/b/x^4)^(1/4)*x*(cos(1/2*arccsc(x^2*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arccsc(x^2*b^(1/2)/a^(1/2)))*Ellip
ticE(sin(1/2*arccsc(x^2*b^(1/2)/a^(1/2))),2^(1/2))/a^(7/2)/(-b*x^4+a)^(1/4)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {325, 313, 335, 275, 228} \[ -\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}-\frac {8 b^{7/2} x \sqrt [4]{1-\frac {a}{b x^4}} E\left (\left .\frac {1}{2} \csc ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{39 a^{7/2} \sqrt [4]{a-b x^4}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^14*(a - b*x^4)^(1/4)),x]

[Out]

-(a - b*x^4)^(3/4)/(13*a*x^13) - (10*b*(a - b*x^4)^(3/4))/(117*a^2*x^9) - (4*b^2*(a - b*x^4)^(3/4))/(39*a^3*x^
5) - (8*b^(7/2)*(1 - a/(b*x^4))^(1/4)*x*EllipticE[ArcCsc[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(39*a^(7/2)*(a - b*x^4)
^(1/4))

Rule 228

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcSin[Rt[-(b/a), 2]*x])/2, 2])/(a^(1/4)*R
t[-(b/a), 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 313

Int[1/((x_)^2*((a_) + (b_.)*(x_)^4)^(1/4)), x_Symbol] :> Dist[(x*(1 + a/(b*x^4))^(1/4))/(a + b*x^4)^(1/4), Int
[1/(x^3*(1 + a/(b*x^4))^(1/4)), x], x] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {1}{x^{14} \sqrt [4]{a-b x^4}} \, dx &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}+\frac {(10 b) \int \frac {1}{x^{10} \sqrt [4]{a-b x^4}} \, dx}{13 a}\\ &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}+\frac {\left (20 b^2\right ) \int \frac {1}{x^6 \sqrt [4]{a-b x^4}} \, dx}{39 a^2}\\ &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}+\frac {\left (8 b^3\right ) \int \frac {1}{x^2 \sqrt [4]{a-b x^4}} \, dx}{39 a^3}\\ &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}+\frac {\left (8 b^3 \sqrt [4]{1-\frac {a}{b x^4}} x\right ) \int \frac {1}{\sqrt [4]{1-\frac {a}{b x^4}} x^3} \, dx}{39 a^3 \sqrt [4]{a-b x^4}}\\ &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}-\frac {\left (8 b^3 \sqrt [4]{1-\frac {a}{b x^4}} x\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt [4]{1-\frac {a x^4}{b}}} \, dx,x,\frac {1}{x}\right )}{39 a^3 \sqrt [4]{a-b x^4}}\\ &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}-\frac {\left (4 b^3 \sqrt [4]{1-\frac {a}{b x^4}} x\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{1-\frac {a x^2}{b}}} \, dx,x,\frac {1}{x^2}\right )}{39 a^3 \sqrt [4]{a-b x^4}}\\ &=-\frac {\left (a-b x^4\right )^{3/4}}{13 a x^{13}}-\frac {10 b \left (a-b x^4\right )^{3/4}}{117 a^2 x^9}-\frac {4 b^2 \left (a-b x^4\right )^{3/4}}{39 a^3 x^5}-\frac {8 b^{7/2} \sqrt [4]{1-\frac {a}{b x^4}} x E\left (\left .\frac {1}{2} \csc ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{39 a^{7/2} \sqrt [4]{a-b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 52, normalized size = 0.39 \[ -\frac {\sqrt [4]{1-\frac {b x^4}{a}} \, _2F_1\left (-\frac {13}{4},\frac {1}{4};-\frac {9}{4};\frac {b x^4}{a}\right )}{13 x^{13} \sqrt [4]{a-b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^14*(a - b*x^4)^(1/4)),x]

[Out]

-1/13*((1 - (b*x^4)/a)^(1/4)*Hypergeometric2F1[-13/4, 1/4, -9/4, (b*x^4)/a])/(x^13*(a - b*x^4)^(1/4))

________________________________________________________________________________________

fricas [F]  time = 0.79, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (-b x^{4} + a\right )}^{\frac {3}{4}}}{b x^{18} - a x^{14}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^14/(-b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

integral(-(-b*x^4 + a)^(3/4)/(b*x^18 - a*x^14), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-b x^{4} + a\right )}^{\frac {1}{4}} x^{14}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^14/(-b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

integrate(1/((-b*x^4 + a)^(1/4)*x^14), x)

________________________________________________________________________________________

maple [F]  time = 0.15, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (-b \,x^{4}+a \right )^{\frac {1}{4}} x^{14}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^14/(-b*x^4+a)^(1/4),x)

[Out]

int(1/x^14/(-b*x^4+a)^(1/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-b x^{4} + a\right )}^{\frac {1}{4}} x^{14}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^14/(-b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

integrate(1/((-b*x^4 + a)^(1/4)*x^14), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^{14}\,{\left (a-b\,x^4\right )}^{1/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^14*(a - b*x^4)^(1/4)),x)

[Out]

int(1/(x^14*(a - b*x^4)^(1/4)), x)

________________________________________________________________________________________

sympy [C]  time = 5.43, size = 34, normalized size = 0.25 \[ - \frac {i e^{- \frac {3 i \pi }{4}} {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {7}{2} \\ \frac {9}{2} \end {matrix}\middle | {\frac {a}{b x^{4}}} \right )}}{14 \sqrt [4]{b} x^{14}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**14/(-b*x**4+a)**(1/4),x)

[Out]

-I*exp(-3*I*pi/4)*hyper((1/4, 7/2), (9/2,), a/(b*x**4))/(14*b**(1/4)*x**14)

________________________________________________________________________________________